Bacterial flagellar capping proteins adopt diverse oligomeric states
نویسندگان
چکیده
منابع مشابه
Bacterial flagellar capping proteins adopt diverse oligomeric states
Flagella are crucial for bacterial motility and pathogenesis. The flagellar capping protein (FliD) regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not formed, resulting in impaired motility and infectivity. Here, we report the 2.2 Å resolution X-ray c...
متن کاملDiverse oligomeric states of CEACAM IgV domains.
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a large family of cell surface adhesion molecules that bind to themselves and other family members to carry out numerous cellular functions, including proliferation, signaling, differentiation, tumor suppression, and survival. They also play diverse and significant roles in immunity and infection. The formation of CEACA...
متن کاملThe bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis
For self-assembly of the bacterial flagellum, a specific protein export apparatus utilizes ATP and proton motive force (PMF) as the energy source to transport component proteins to the distal growing end. The export apparatus consists of a transmembrane PMF-driven export gate and a cytoplasmic ATPase complex composed of FliH, FliI and FliJ. The FliI(6)FliJ complex is structurally similar to the...
متن کاملBacterial flagellar motor
What do you think of the state of biology today? It has indeed changed in many ways, and to the good. Molecular biology has come into its own and provides enormous power to answer new and old questions in such areas as development, physiology, and cell biology. The use of mathematical tools has become increasingly effective in shedding light on ecological and evolutionary problems, and other ma...
متن کاملBacterial Flagella: Flagellar Motor
Many species of bacteria actively seek out favourable conditions for growth by swimming up gradients of nutrients, oxygen, light or other attractants, or down gradients away from toxic substances (repellants). Different species employ several different modes of swimming, almost all of which are driven by the rapid rotation of helical flagellar filaments that protrude from the cell. Rotation of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: eLife
سال: 2016
ISSN: 2050-084X
DOI: 10.7554/elife.18857